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A regular solution site-mixing model for illites
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Abstract—The dependence on the composition of the thermodynamic stability of an illite can be
treated in terms of a regular solution site-mixing model. Four end-member micas (muscovite,
pyrophyllite, phlogopite, and annite) were mixed to simulate an illite in this study. In the model,
random mixing of cations was assumed over each given class of cation sites. Mixing over cation
sites between different classes of cation sites was not allowed. The resulting free energy and chemical
potential equations contain four site interaction parameters: three for octahedral site interactions and one
for interlayer and tetrahedral site interactions. These parameters cannot presently be evaluated
because of a lack of experimental data on Fe®*-free illites. The model does imply that the octahedral
site interaction parameters must be significantly more positive than the interlayer and tetrahedral site
interaction parameter to account for the dominant dioctahedral nature of most natural illites. This
constraint is necessary to balance out the increase in stability due to the configurational entropy
of an illite having a major trioctahedral component.

The model can be extended to cover a wider range of illite compositions by the inclusion of an
end-member mica containing Fe** jons in the octahedral sites. At present the thermodynamic

properties of such an end-member are unknown.

INTRODUCTION

THE THERMODYNAMIC stabilities of most clay minerals
are particularly difficult to evaluate because of their
complex and variable compositions. TARDY and
GARRELS (1974) presented a novel and useful approach
for estimating the free energies of formation of such
minerals using an empirical additive scheme of the
‘silicated’ free energies of formation of oxides and
hydroxides.

This report presents a regular solution site-mixing
model for illites which may prove useful in delineating
illite stability relations in sediment diagenesis. The need
for such a model arose from an examination of the
application of the Tardy and Garrels scheme to
illites at 25°C and 1 bar. TARDY and GARRELS (1974)
estimated the free energies of formation for several
illites for which experimental values have been
obtained by Routson and Kitrrick (1971). Their
estimated values were in good agreement with re-
calculated values of the original free energies reported
by Routson and Kittrick. However, this agreement was
apparently due to their assumption (in the re-
calculations)of an increased stability of 3.5 kcal per mol
(— 116 to —119.5) in the free energy of aqueous
Al**. This correction was an overcorrection of 2 kcal
per mol as indicated by the recently published value
from HEMMINGWAY and RoBIE (1977).

The general validity of applying a regular solution
site-mixing model to illites has to be determined by
comparison between predicted and experimental
results. Presently, there are not enough experimental
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data on illites to test such a hypothesis. It is hoped,
however, that this paper will stimulate experimentalists
to determine more free energies for illites of varying
composition and over a range of pressures and
temperatures.

ILLITE END-MEMBERS

In this study an illite is simulated by mixing various
mica end-members in a solid solution. The mixing
is done over available octahedral, tetrahedral, and
interlayer cation sites. Four end-members were
used to generate an illite: two dioctahedral micas,
muscovite [KALAISi;O,,(OH),] and pyrophyilite
[AL,Si4O,o(OH),]; and two trioctahedral micas,
phlogopite [KMg;AlSi;O,,(OH);,] and annite
[KFe3AlSi,0,,(0OH),]. The resulting illite has an
interlayer cation K™ to balance the charge deficiency
caused by the substitution of AI** for Si** in the
tetrahedral sites. The octahedral cations are Al®*,
Mg?*, and Fe?*.

The major differences between the simulated illites
and natural illites are the absence of Fe®* in the
octahedral sites and the lack of an octahedral charge
deficiency. An end-member mica containing octahedral
Fe®* ions and having an octahedral charge deficiency
is needed. At present the thermodynamic properties
of such a mica are not available.

WEAVER and PoLLArD (1975) list the structural
formulas of 29 different illites. In general these
illites are primarily dioctahedral and are characterized
by K* in the interlayer sites, Si** and AI** in the
tetrahedral sites, and Al’** in the octahedral sites
together with minor amounts of Mg?* and Fe’*
and very minor amounts of Fe?’*. The interlayer
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charge is dominantly due to a tetrahedral charge
deficiency rather than an octahedral charge deficiency,
although the latter is frequently significant.

REGULAR SOLUTIONS

A regular solution is a solution having zero excess
entropy of mixing (HILDEBRAND et al, 1970). By
definition, an ideal solution is a regular solution
having zero excess enthalpy of mixing. As shown
below, the thermodynamic properties of a regular
solution are expressed in terms of the standard
state chemical potentials of the end-members, the
configurational entropy of mixing, and the excess
enthalpy of mixing Table 1 contains a list and
explanation of all symbols used in the following

The free energy of formation of a solution, AG, at a
given pressure and temperature is related to its
thermodynamic components by:

AG, =) ny n

where n; and g, are the number of moles and the
chemical potential of the i-th component, respectively.
The chemical potential is defined by:

#i = p5+ RTng, 2)

where pf is the standard state chemical potential,
a; is the thermodynamic activity, R is the universal
gas constant, and- T is the absolute temperature in
degrees Kelvin.

a, 18 defined as:

discussions. a; = di A, 3
Table 1. Symbols used in the text
A Avogadro’s number
a.a’ Activity and activity in an ideal solution, respectively
AE Internal energy of formation
AG Free energy of formation
AH Enthalpy of formation
k Boltzmann’s constant
/ Activity coefficient
W ue Chemical potential and standard state chemical potential, respectively
N.N Number of molecules, cations, etc., as defined in the text
n Moles of molecules, cations, etc., as defined in the text
P Pressure in bars
P Probability as defined in text
R Universal gas constant
AS Entropy of formation
T Temperature in degrees Kelvin
w Increase in number of distinguishable configurations resulting from random
mixing in a solution
W, w Number of distinguishable configurations resulting from random mixing in a

solution and end-member, respectively

WO, W02 WO3. WTI

Regular solution site interaction parameters defined by eqns (28), (29), (30).

and (27), respectively

.z Contribution to AH,, for the interaction on adjacent lattice sites of a pair

of y and z cations in the X-th cation site class

X Mole fraction

ot Average number of adjacent sites

Subscripts

Al Fe,K, Mg, Si AIP* Fe?* K*,Mg?*,Si*" cations occupying lattice sites
ann Annite

E Signifies an empty lattice site

ex Excess

I Interlayer cation sites

i.j.c.y.z Defined in text

ill Tllite

is Ideal solution

mix Mixing for AE ;, and mixture for N,
mm Mechanical mixture

mus Muscovite

O Octahedral cation sites

phl Phlogopite

pyr Pyrophyllite

s Solution

T Tetrahedral cation sites

Superscripts

Molal or molar quantity, as defined in text
Standard state or ideal solution property, as defined in text
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where a7 is the activity in an ideal solution and 4,
is the activity coefficient. An ideal solution is defined
as a solution in which the total free energy of mixing
results from the configurational entropy of mixing.
This implies zero enthalpy of mixing.

The configurational entropy of mixing in an
ideal solution, AS,, is described by:

AS,, = kinW. @)

Where k is Boltzmann’s constant and W is the increase
in total number of distinguishable configurations
resulting from random mixing. In this study a con-
figuration will represent a particular distribution of
groups of cations on distinguishable sites within a
lattice framework.

Combining eqns (1), (2), and (3) yields:

AG,= Y nue + RTY mInal + RTY n;In k. (5)

AG can also be expressed as the sum of contributions
due to a mechanical mixture, an ideal solution, and
the non-ideal deviation from an ideal solution. The
latter is commonly called the ‘excess’ contribution
to AG,:

AGs = AGmm + AGis + Ach' (6)

The corresponding terms between eqns (5) and (6) are
equivalent and we can write:

AG,,=RT> n;lnaj, (7
and
AG, = RTY n;In /. 8)

Differentiating eqn (8) at constant T and P and
applying the Gibbs—Duhem equation gives:

8AG .,
on,

> =RTIni,. ©)
T.Pnj;

AG,, and AG,, are also defined by eqns (10) and (11),
respectively.

AG,, = — TAS,;

is T s

(10
and

AG, = AH, — TAS,,. (11)
AS,, was defined by eqn (4). Combining eqns (4), (7),
and (10) yields:

RY nlnagl = —khnW. (12)
AH_, is the total enthalpy of mixing and AS,, is the
difference between the total entropy of mixing and
AS,.. For a regular solution, AS, is defined to be zero
(HILDEBRAND et al., 1970). Substituting this property of
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a regular solution into eqn (11) and combining with
eqn (9) yields:

RTIn 4, = <8AH°X> .
on; T.P.n;

Using the above relations, eqn (6) for a regular
solution can be restated as:

(13)

AG, = ¥ ny — TAS, + AH,,. (14)

CONFIGURATIONAL ENTROPY OF
MIXING WITHIN AN ILLITE

The general procedure outlined by TEMKIN (1945)
was used to compute the configurational entropy for
the mixing of the four end-member micas. The con-
figurational entropy of mixing is the total increase in
site configurations resulting from the random mixing
of groups of cations over distinguishable cation sites.
Mixing over anion sites will not produce distinguishable
permutations. This is because identical anions
occupy similar classes of sites in each mica end-
member, and as discussed below, mixing was not
allowed between different classes of sites.

The structural formula of the simulated illite can
be written as:

[Ko_11[Alp_5, Mgo_s, Feo_s][Alo_1, Si3_4]0; olOH),

where the cation subscripts show the possible ranges
due to variations in the mole fractions of the end-
member micas. From left to right the brackets enclose
cations occupying interlayer (I), octahedral (O), and
tetrahedral (T) sites, respectively. For a discussion of
these three classes of cation sites, the reader is
referred to any standard text on clay mineralogy
such as that by GriM (1968). Briefly, the site classes
correspond to lattice layers within a general mica
or illite structure. These layers are parallel to the
ab crystallographic plane and are characterized by
cations having a common coordination number
which could be either octahedral, tetrahedral, or
12-fold (interlayer). The repeat pattern of the layers is
TOTI. There are four T sites, three O sites, and one 1
site per structural formula of the mica end-members.
The cation site occupancies for the four end-member
micas (per structural formula) are shown in
Table 2.

One basic assumption has to be made to allow
computation of the number of distinguishable
permutations. Random mixing of cations was assumed
over each class of cation sites; however, mixing of
cations between sites of different classes was not
allowed. Random mixing implies electrical neutrality
will not necessarily be maintained over the smallest
integer structural formula, because cations of different
valences are being mixed on each class of cation
sites.

The configurational entropy of mixing was defined
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Table 2. Cation site occupancies in the four end-member micas*

Mica I O T
Muscovite K* 2A13* E 3Si¢t AT
Pyrophyllite E 2A1Y E 4Si**
Phlogopite K* 3Mg?* 38i** AIPY
Annite K* 3Fe?* 3Sitt AT

*I, O, and T refer to interlayer, octahedral, and tetrahedral sites,
respectively. E indicates an empty site. The occupancies are per structural

formula.

by eqn (4) in terms of W which is the total number
of distinguishable site permutations resulting from the
mixing of the end-members. W is calculated by
computing the number of such permutations in the
solution, W, divided by the number of such permuta-
tions present in a mechanical mixture of the end-
members, IT,w;:

W =W, +[]w. (15)
W, and TI1;w; can be computed from the multiplication
ofthe appropriate multinomial coefficients (McQuarrie,
1973). These coefficients, the bracketed terms in
eqns (16) and (17), are of the form:

(IN)!
<ni(Ni!)>c,j

where the subscripts ¢ and j refer to the class of
cation sites and the end-member or mixture,
respectively. [ is the number of ¢ cation sites per
structural formula and N is the number of j molecules.
N is the total number of ¢ cation sites in j molecules
occupied by the i-th cation. If i = E, then the sites are
empty. For each multinomial coefficient, IN = £,N,,

wo— N! (3N)!
TOANKINE imie \NAINEINWINE o i,
4N)!
% Nyt . (16)
NAI!NSi! T,mix
and
3IN)! 4N)!
[ = (BN (N
i NAI!NE! O,mus NSi!NAl! T,mus
3N)! 4N)!
><<()> _(()) (17
NAI!NE! O,pyr NSi!NAl! T,phl
(4N)!
X _—_—
NSi!NAl! T,ann

Equations (16) and (17) can be substituted into
eqn (15) and simplified using Stirling’s approximation
together with stoichiometric relations of the mixture
and end-members. These relations are of the form:

NK.l,mix = Nmus + Nphl + Nann
and

NA].O,mus = 2Nmus' (18)

Finally, the simplified equation can be substituted
into eqn (4) and k can be replaced by R/A where A
is Avogadro’s number. The resulting equation is:

AS, = —R[(nmus + npp + ) In (1l = X )

+ npyr In Xpyr + 3(nmuw + ”pyr)

x In(X .+ Xpye) + 3, In X

+ 3nunn ln Xunn + (nmm + nphl + nunn)

xIn(l = X,) + 4n,,In <,3,L___,m>

X
# 30+ (14 52) |0

where n; and X refer to the number of mols and the
mole fraction of the i-th end-member in the mixture,
respectively. If any X, goes to unity then n; and X,
will go to zero. Note that AS,, goes to zero if any
X; goes to unity. The first two terms in eqn (19)
refer to mixing on the interlayer sites; the next three
terms describe mixing on the octahedral sites; and
the remaining three terms relate to mixing on the
tetrahedral sites,
Equating eqns (4) and (12) yields:
AS;, = —REnilnaiu. (20)
Equation (19) can be rewritten in the form of eqn (20)
which allows isolation of the equations for a} for the
four end-members. This procedure follows that out-
lined by TEMKIN (1945). The equations are:

X 3
“.guﬁ = (1 - Xpyr)(Xmus + Xpyr)3(1 - Xny)<1 * ;yr>

1)

(22)

34+ X,,.\*
Gy = (X)X s+ X’(f)

X 3
a;hl = (1 _Xpyr)(Xphl)3(1 - Xpyr)<l + :I;Yf> (23)

X 3
aznn = (1 - Xpyr)(Xunn)3(1 - Xpyr)<l + ;Y') . (24)

In each of the four equations above, the first and
second terms result from mixing on the interiayer
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and octahedral sites, respectively. The remaining
terms are for mixing on the tetrahedral sites. Note
that a goes to 1 as X ; goes to unity.

The physical significance of an ideal activity
becomes apparent if we consider the probability,
P,. of picking at random out of the solution all the
structural units, N,, of a given end-member. For
example, let us compute In P, ., the natural log of the
probability of picking the N structural units of
pyrophyllite from the solution. P, corresponds to
picking N, empty interlayer sites, 2N, aluminum
occupied octahedral sites, N, empty octahedral
sites, and 4N, silicon occupied tetrahedral sites.
In terms of mole fractions and using the
stoichiometries of the end-members, we can write:

In P = In| X New M s
pyr pyr 3

x Xmus + Xpyr prr (3prr)!
3 @N, N, !

NEER AN
4

where the first term corresponds to picking the empty
interlayer sites; the second term, the aluminum
occupied octahedral sites; the third term, the empty
octahedral sites; the fourth term, the number of
distinguishable permutations of octahedral site
occupancies; and the fifth term, the silicon occupied
tetrahedral sites. The use of Stirling’s approximation
reduces the fourth term:

6N, . 27

N.. In—
"N "y

! N,

pyr

Substituting this simplified term into the above
expression gives:

34+ X,,.\*
InP,, =N, nX, (X..+ X, (—4—3’—> .

A comparison with this expression and eqn (22)
shows:

N
Poye = (a, )

and for each of the ideal activity expressions, we can
write:

P, = a3,

The ideal activity approximates the probability of
picking at random one structural unit of an end-
member out of solution. It only approximates because
of the use of Stirling’s approximation in the derivation
of the configurational entropy. One interesting point
is that an end-member whose composition overlaps
completely with the other end-members will not have
a zero ideal activity when its mole fraction is zero.
This follows because the probability of picking at
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Fig. 1. The ranges of the ideal solution activities of
muscovite, a,., and pyrophyllite, & .. in a binary solid

mus? pre

solution as computed from eqn (21) and (22).

random a structural unit of that end-member would
not be zero. An example of this in the illite model is
muscovite. A solution of pyrophyllite with phlogopite
and/or annite would have a zero mole fraction of
muscovite and a non-zero q,,. as predicted from
eqn (21).

A decrease in af represents an increase in the stability
of the i-th end-member in an ideal solution. The
ranges of a$ predicted from eqns (21) to (24) are
shown on Figs. 1-5. The corresponding entropies
predicted from eqn (19) range from 0 to 9 cal/mol/deg.
The maximum value corresponds to trioctahedral
illites with only minor amounts of dioctahedral
components. This implies that natural illites should
have a major trioctahedral component if they can be
represented by the ideal solution model developed
here. This is not the case in natural illites; they have
only a minor trioctahedral component. For this reason

10

asl Xmus =0, Xpyr =0

n's._.

@

[ &4 o

04 \ ®

u.—

0 ! 1

[} 02 04 06 08 10
Xghl

Fig. 2. The ranges of the ideal solution activities of
phlogopite, ajy,, and annite, 4, in a binary solid solution
as computed from eqns (23) and (24).
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Fig. 3. The range of the ideal solution activity of

muscovite. a,,,,.. in a quaternary solid solution as computed
from egn (21).

a regular solution contribution of excess enthalpy was
added to the solid solution model.

EXCESS ENTHALPY OF
MIXING WITHIN AN ILLITE

The general procedure outlined by DENBIGH (1971,
pp. 432-435) was followed to formulate an expression
for the excess enthalpy of mixing, AH,. Random
mixing is assumed over lattice sites within each site
class; thus AS, is zero. The internal energy of
mixing, AE .. is assumed to result only from inter-
actions between ions on adjacent sites. Because the
mixing takes place at constant pressure, the change
in volume with mixing is assumed negligible and AH _,
becomes equivalent to AE ..

The computation of AH, is tedious but fairly
simple. The number of site interactions within a given
site class is derived (from simple probability theory

10
/
sl !
/
/
08 S
g‘;é $// /
0ar < &/
45 //7
(V)
- (%) A
04
0 —_—— 1 1
0 02 04 06 08 10
Xpyr

Fig. 4. The range of the ideal solution activity of
pyrophyllite, ;... in a quaternary solid solution as
computed from eqn (22).
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using a random cation distribution) for a particular
interaction of ions, i.e. Si**-Al1*" interactions in the
tetrahedral site class. The number of such inter-
actions due to mixing is equal to the total number of
such interactions within the solution minus the sum
of such interactions in the end-members. The resulting
number is then multiplied by a parameter describing
the contributions to AH, per interaction. The process
is repeated for each of the other particular inter-
actions of ions in the site class, ie. Si**-Si** and
AP**-AI’" interactions in the tetrahedral class. The
summation of the results of this procedure for each
cation site class is equal to AH,,. As was the case
for AS,.. anion sites are not considered. This follows
because identical anions occupy similar classes of
sites in each end-member and therefore also in the
mixture. The resulting contributions to AH,, from
the anion site interactions will cancel out between
the mixture and the end-members.

The number of site interactions for each particular
interaction of cations within each cation site class is
listed in Table 3. Each symbol used to denote the
contribution to AH,, per interaction is also given in
Table 3. An expression for AH,, can be written by
summing the terms in Table 3 according to the
procedure described above. The expression can then be
simplified using the following relations:

I
—_

Y,

N.=nA

i i

and

WX,,= WX, /A

vz

WX, , is the contribution per interaction to AH,, for
the site interaction of the y, z cations within the X-th

10
u_
06 /?
/
2 <
04 / fa—10
Xmus + Xamn= 0.5/
02 \ Yy 0.1
03
0 | |
0 02 04 06 08 10

Fig. 5. The range of the ideal solution activity of

phlogopite, ag,,,. in a quaternary solid solution as computed

from eqn (23). The range of the ideal solution activity of

annite, d;,,, in a quaternary solid solution as computed

from eqn (24) is shown on Fig. 5 if the subscripts phl
and ann are interchanged.
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Table 3. The number of pairs of adjacent lattice sites having x, y occupancies, N, ., in the solution and in the end-members*

Solution AH,
or Site per
end-member class  x.,y interaction N,
Solution T AT Si4* W Taisi 2N e + Ny + Ny x BN+ 3N,
+ 3N + 4N, ) + 4N,
T AT ARY W Ty 2 (N + N + N7+ 8N,
T Si**, Si** WTgsi 233N e + 3Npm + 3Ndnn +4N,,)° = 8N,
O Mg’ Al WO, m 262(N s + Npy J(Npy mix
O Fe? ", AI*Y WO, Ay 262N s + NW)(NJM) + N
O Mg2+~ Fe?* WOMg,Fc “03( phl)( dl\ll) - Nmn
o Mgl+~ E WOMg,I “O(Nphl)(Nnun pvr) + Ny,
O Fe?" E WOy, 2o(Nyud (N + prr) + Ninix
O AP E WO, ¢ 202(N . + N, ) + 3N,
O E.E WOy, 2o(Nppoe + N, ) 6N,,m
O APT AP WO A A 202(Ne + NM) + 3N,
O Mg?*, Mg?* WO\ my 263N, 2Nmlx
o Fe?* Fe* WOy, i Z03(N,,.)* + Niix
1 K*,E Wi 2)(N s + N,,,,l + NA,,,,)(NP,,) + Nuix
1 K* K* WIy 2)(Ngus + Nphl + Ndnn) + 2N i
I E.E Wi, ,(N,,.)° = 2N,
Muscovite T AT, Si** W Ty 3N, + 4
T AP AR WTaa 2rNpw = 8
T Si**, Sit* WTs 29N, = 8
O AP E WO, ¢ 202N =
O E.E WO, ZoNpe = 6
O AR AP WO aa 202N, + 3
I K*, K* Wik 2N s =
Pyrophyllite T  Si**, Si*t WTgsi 22N,
O AP'E WO 262N, =+ 3
O EE WO, , 2oN,,, = 6
O APt AR WO, A 202N, + 3
I E.E Wi, aN,,, =2
Phlogopite T AP, Si4r W Taisi 203N, + 4
T APRY AR W T 2Ny + 8
T Si**, Si** W Tgisi 29N, + 8
O  Mg?* Mg WOy, m, 263N,y + 2
1 K" K* Wi x LN + 2
Annite T AP Si** W Ty si 213N, = 4
T AR AT W T a 2Ny =~ 8
T Sit*, Sit* W Ty 29N, = 8
(0] Fez +~ Fez * WOFc,Fc ZOSNann +2
1 K*. K* Wik x Z Ny = 2
* Nipuss Npyo Npn, and N refer to the number of molecules from the muscovite, pyrophyllite, phlogopite, and

annite components, respectively, and N, is the sum total of molecules from all 4 components. A molecule refers to a
structural formula unit as defined in the text.

cation site class, and WX, , is the corresponding ¥
molar quantity. The simplified expression for AH, is + | oy + Npy) XunZo
given below:

x [ 2WOp, o1 + WOp. g — 2WO
Ach = |:(nmus + nphl + nunn)XpyrzT ( Fedl ref ? A

WO,, _
x asi  WThia _ WTsisi T T T ? (e Wbrc,h)}
4 8 8
+ [ ann phl‘()( Mg, Fe — %WMg,Mg

+ | s + npyr)Xphlz()

_ 27, -2 WUFL Fe>:| [ L + nph[ + nunn)
X 2WMg,A1 + WUMg,I: -3 WUAI.E

o W1, WI,.
V_VUF E 3 x var < IK,F_ - LI “_"’I“l4:[’>}~
- — — %Wm.m -2 WMg,Mg)] 2 2
6 (25)
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The first and last bracketed terms in eqn (25)
represent tetrahedral and interlayer site interactions,
respectively, between pyrophyllite and the other three
end-member components. The second and third
bracketed terms describe the octahedral site inter-
actions between the two dioctahedral end-member
componentsand the phlogopite and annite components,
respectively. The fourth such term gives the octahedral
site interactions between the two trioctahedral end-
member components. Equation (25) can be further
simplified by combining the WX, terms, resulting
in the following expression:

Ach = (nmu~' + nph] + nann)Xpyr ” TI
+ (nmus + npyr)(Xphl WC I + Xann WD—Z)
+ Xphlnunn II C 3 (26)
where
w7 — o (FTusi _ Wlaa _ W,
4 8 8
_— wI WT, ¢
+ z[< Wi, ., — 2“"‘ - 2“) 27
WoT = zo<2WUMg‘A, + WOy, — $WO0,, ;
- O 3 WO, = 1 WOy, )
(28)
Wo7 = (zWU ¢ WOy — WO,
WO,
L CNREE L
(29)
and
W63 = ZO<3 WUMg,Fe - %WMg,Mg - %WvFe,Fe>'
(30)

Expressions for In 4; can be determined by taking
the partial derivative of eqn (26) with respect to n;
and applying eqn (13). The resulting eqns are given
below.

= (X2, WTT — X, X,..(WO3 — WOT
~ WO7)+ X2, WOT + X2, WO2)RT

€1y

In A

“mus

In AP)’T = ((1 -X )2 wrl — Xpthann

pyr
x (W03 — WOl - W02
+ X}y WOT + X3,, WO2)/RT (32)

In A’phl = (Xiyr WTI + Xann(l - Xphl)
x (W03 - WOT -~ W02)

+(1 = X,,)? WOT + X2, WO2)RT
(33)

R. K. STOESSELL

and

In A

“ann

= (X2

pyr

x (W03 — WOl - WO2)

” TI + (1 - Xann)XphI

+ X, WOT+(1 —X,,) WO2)/RT.
(34)
In egns (31) to (34), as Xi=1 then Ai=1 and
the eqns for In A, where j +# i, give the limiting
values for A; when X ; = 0.

SITE INTERACTION PARAMETERS

Experimental thermodynamic data for illites, whose
compositions can be approximated by the model,
are needed to evaluate the four site interaction
parameters (WTI, WO 1, WO 2, and WO 3). These
data could be free energies of formation determined
from equilibrium solubility studies or heats of
solution measured by calorimetry. These parameters
need to be evaluated at several different temperatures
(of diagenetic interest) to determine their temperature
dependence. At present, the only reliable experimental
data are at 25°C and I atm for illites containing
significant amounts of ferric iron (RouTsoN and
KiTTRICK, 1971), but the lack of a ferric mica end-
member precludes the use of this data.

The evaluation of the site interaction parameters
will have to wait until more experimental data are
available. In terms of the model, the dominant
dioctahedral nature of most illites places some
restrictions on the relative values of these parameters.
As shown previously, maximum configurational
entropy occurs in trioctahedral illites. This increased
stability will have to be balanced out by decreased
stability resulting from site interactions between
octahedral sites. In the model, this implies WOT,
W02, and WO3 are significantly more positive
than WTT.

The number of site interaction parameters can be
reduced if ferrous iron, a very minor component in
illites, is neglected. The mole fraction of annite
would then become zero, resulting in WO 2 and W03
dropping out of the free energy expressions, leaving
only WTT and WO 1 to be evaluated.

FREE ENERGY EXPRESSIONS

An expression for the molar free energy of
formation of an illite, AG,,, is obtained by sub-
stituting eqns (19) and (26) into eqn (14) and
replacing the mols of end-members by their respective
mol fractions:

AGy, =Y X5 + RT[(] - Xpy,)<2 In(t — X,.)

X
+ 31n<1 + %)) + Xpy,(ln X oy
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3+ X
+ 4ln<7ﬂﬂ>) +3(X 0 + X,y

X In(X,,..+ X

mus pyr

)+ 3X i n X,

+ 3X,

ann

In X,

ann

] +0-X,)X,, WTI

+ (X + X X WO'T

+ X, WO02) + X, X,,. WO 3.

ann

(35)

Equations (21) to (24) and (31) to (34) define
and In 4, for each end-member. Expressions for the
chemical potentials of the end-members are defined
by substituting the appropriate equations for af
and In 4; into eqn (3) which is then substituted into
eqn (2):

Huws = M + RTIn [(I — X0 X + X,,0)°

ann

3I+X,,.\°
x <‘3 "Y> J+ X, WTT - X, X

x (W03 — WOT— WO032)+ X2, WOT

+ X2, W02 (36)
Hpye = Uy, + RTIn [Xpy,(Xm,,s + X,

x <3+2)—(M>4} +(1 =X, 2 WTI

~ X, X, WO — WOT — WOTI)

+ X2, WOT + X2, W02 (37)

uphl = ,u:m + RTIn I:(l — Xpyr)ZX?)hl

34X\
x <“3 P> J+ X2, WTT

+ szn(l - Xphl)(WC 3 - T C I— ” U 2)

+(1-X,,)WOT+ X2, W02 (38)

Hopn = .u(':nn + RTIn [(1 - Xpyr)ZX?mn

X 3
y (3“+3 P) }r X2, WTT

1159

+( _Xnnn)Xphl( WO3 - WOo1- W02)

+ X2, WOT+(1-X,,)WO2. (39)

ann

SUMMARY

Expressions describing the compositional depen-
dence of the thermodynamic stability of an illite
have been derived in terms of a regular solution
site-mixing model. Four end-member micas (muscovite.
pyrophyllite, phlogopite, and annite) were used to
simulate an illite. A ferric mica end-member is
needed to extend the model to illites containing
ferric iron. At present the thermodynamic properties
of such an end-member are unknown; however,
when they become known, the end-member can be
added following the procedure outlined in this report.

The model should prove useful in delineating illite
stability relations in sediment diagenesis, but this
application must wait until experimental data arc
available to evaluate the site interaction parameters.
Only two parameters need be evaluated to apply the
model to iron-free illites.
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